Paper-Based, on-Demand and Disposable Biobattery

Portable, on-demand micropower generation is provided by developing paper-based biobatteries that can deliver on-chip energy to the next generation of point-of-care (POC) diagnostic platforms. This work creates a low-cost, disposable, long-shelf life and eco-friendly micropower source that can be easily integrated in paper-based POC devices and be readily activated by one drop of human body fluids (e.g. saliva, sweat, urine, and blood), which is readily available in any challenging area. A high-performance, paper-based, bacteria-powered battery is created by building microbial fuel cells with inactive, freeze-dried exoelectrogenic bacterial cells, allowing for a long shelf life, which generates power within minutes of adding fluids. An oxygen-tight interface and engineered conductive paper reservoir achieve significant performance boost from maximized microbial electron transfer efficiency. Exoelectrogenic bacteria pre-inoculated in the paper battery is freeze-dried for long-term storage and can be readily rehydrated for on-demand power generation. Sixteen microbial fuel cells are incorporated on a single sheet of paper while all are connected in series with two electrical switches mounted on a paper circuit board, which produces more than enough electrical energy to power an on-chip, light-emitting diode.

Advantages: 

The proposed battery will have competitive advantages over other potential energy harvesting technologies because biological fluids for on-demand battery activation are readily available even in the most resource-constrained settings and the lyophilization technology will enable long-term storage of biocatalytic cells without degradation or denaturation in those challenging environmental conditions.

 

Binghamton University RB548

Patent Information:
Technology/Start-up ID: